首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Side-chain conformational thermodynamics of aspartic acid residue in the peptides and achatin-I in aqueous solution
Authors:Kimura Tomohiro  Matubayasi Nobuyuki  Nakahara Masaru
Institution:Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.
Abstract:Sequence-position dependence of the side-chain conformational equilibrium of aspartic acid (Asp) residue is investigated for both model Asp peptides (di- to tetra-) and neuropeptide achatin-I (Gly--Phe-Ala-Asp) in aqueous solution. The trans-to-gauche conformational changes on the dihedral angle of C-C(alpha)-C(beta)-C are analyzed in terms of the standard free energy DeltaG(0), enthalpy DeltaH(0), and entropy -TDeltaS(0). The thermodynamic quantities are obtained by measuring the dihedral-angle-dependent vicinal (1)H-(1)H coupling constants in nuclear magnetic resonance over a wide temperature range. When the carboxyl groups of Asp are ionized, DeltaG(0) in the aqueous phase depends by approximately 1-2 kJ mol(-1) on the sequence position, whereas the energy change in the gas phase (absence of solvent) depends by tens of kJ mol(-1). Therefore, the weak position dependence of DeltaG(0) is a result of the compensation for the intramolecular effect by the hydration (= DeltaG(0)-). The DeltaH(0) and -TDeltaS(0) components, on the other hand, exhibit a notable trend at the C-terminus. The C-terminal DeltaH(0) is larger than the N- and nonterminal DeltaH(0) values due to the intramolecular repulsion between alpha- and beta-. The C-terminal -TDeltaS(0) is negative and larger in magnitude than the others, and an attractive solute-solvent interaction at the C-terminus serves as a structure breaker of the water solvent.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号