Tyrosine hydroxylase in secretory granules from bovine adrenal medulla. Evidence for an integral membrane form |
| |
Authors: | D M Kuhn R Arthur H Yoon K Sankaran |
| |
Affiliation: | Department of Psychiatry, Lafayette Clinic, Wayne State University School of Medicine, Detroit 48207. |
| |
Abstract: | Intact secretory granules isolated from bovine adrenal medulla express tyrosine hydroxylase (TH) activity. Granule-associated TH sediments on continuous sucrose gradients with dopamine beta-hydroxylase, a marker for granule membranes, indicating that TH is associated with chromaffin granules. Membranes prepared from lysed granules retain TH, whereas granule contents are free of the enzyme. TH immunoreactivity was detected in granule membranes by immunoblot analysis using a polyclonal antiserum against TH. TH immunoreactivity cannot be removed from membranes by washes in high ionic strength buffers and is only partially removed from membranes by treatment with either urea or Na2CO3. TH can be removed from granule membranes by the detergents Nonidet P-40, Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Treatment of membranes with a phosphatidylinositol-specific phospholipase C did not remove TH, ruling out the possibility of a glycosyl phosphatidyl anchor. Fractionation of granule membranes by temperature-induced phase separation in Triton X-114 revealed that TH is recovered in phases in which integral (detergent phase) and hydrophobic (phospholipid phase) membrane proteins are typically found. By contrast, TH from adrenal cytosol fractionated exclusively into the aqueous phase along with other soluble proteins. Digestion of granules with various protease enzymes revealed that TH is resistant to degradation, suggesting that the enzyme is embedded within membranes. TH becomes phosphorylated when intact granules are exposed to the catalytic subunit of the cAMP-dependent protein kinase, indicating that at least the N-terminal region of TH is exposed on the cytoplasmic surface of granules. These results establish that a fraction of TH is an integral component of bovine granule membranes. The association of TH with granule membranes may play a role in coordinating TH activity and catecholamine release. |
| |
Keywords: | |
|
|