首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cross-Ecosystem Comparisons of In Situ Plant Uptake of Amino Acid-N and NH4 +
Authors:Jack W McFarland  Roger W Ruess  Knut Kielland  Kurt Pregitzer  Ronald Hendrick  Michael Allen
Institution:(1) Department of Biology and Wildlife, University of Alaska, PO Box 757000, Fairbanks, Alaska 99775-7000, USA;(2) Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, USA;(3) Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada 89557, USA;(4) Warnell School of Forest Resources, University of Georgia, Athens, 30602, Georgia, USA;(5) College of Natural and Agricultural Sciences, University of California, Riverside, California 92521, USA
Abstract:Plant and microbial use of nitrogen (N) can be simultaneously mutualistic and competitive, particularly in ecosystems dominated by mycorrhizal fungi. Our goal was to quantify plant uptake of organic and inorganic N across a broad latitudinal gradient of forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and dominant mycorrhizal association. Using 13C and 15N, we observed in situ the cycling dynamics of NH4 + and glycine through various soil pools and fine roots over 14 days. Recovery of 15N as soil N varied with respect to N form, forest type, and sampling period; however, there were similarities in the cycling dynamics of glycine and NH4 + among all forest types. Microbial immobilization of 15N was immediately apparent for both treatments and represented the largest sink (~25%) for 15N among extractable soil N pools during the first 24 h. In contrast, fine roots were a relatively small sink (<10%) for both N forms, but fine root 13C enrichment indicated that plants in all forest types absorbed glycine intact, suggesting that plants and microbes effectively target the same labile soil N pools. Relative uptake of amino acid-N versus NH4 + varied significantly among sites and approximately half of this variation was explained by mycorrhizal association. Estimates of plant uptake of amino acid-N relative to NH4 + were 3× higher in ectomycorrhizal-dominated stands (1.6 ± 0.2) than arbuscular mycorrhizae-dominated stands (0.5 ± 0.1). We conclude that free amino acids are an important component of the N economy in all stands studied; however, in these natural environments plant uptake of organic N relative to inorganic N is explained as much by mycorrhizal association as by the availability of N forms per se.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号