首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis
Authors:Thomas Haizel  Thomas Merkle  Aniko Pay  Erzsebet Fejes   Ferenc Nagy
Affiliation:Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland;The Biological Research Centre of the Hungarian Academy of Sciences, Plant Biology Institute, PO Box 251, H-6701 Szeged, Hungary
Abstract:Ran, a small soluble GTP-binding protein, has been shown to be essential for the nuclear translocation of proteins and it is also thought to be involved in regulating cell cycle progression in mammalian and yeast cells. Genes encoding Ran-like proteins have been isolated from different higher plant species. Overexpression of plant Ran cDNAs, similarly to their mammalian/yeast homologues, suppresses the phenotype of the pim46-1 cell cycle mutant in yeast cells. The mammalian/yeast Ran proteins have been shown to interact with a battery of Ran-binding proteins, including the guanidine nucleotide exchange factor RCC1, the GTPase-activating Ran-GAP, nucleoporins and other Ran-binding proteins (RanBPs) specific for Ran-GTP. Here, the characterization of the first Ran-binding proteins from higher plants is reported. The yeast two-hybrid system was used to isolate cDNA clones encoding proteins of approximately 28 kDa (At-RanBP1a, At-RanBP1b) that interact with the GTP-bound forms of the Ran1, Ran2 and Ran3 proteins of Arabidopsis thaliana . The deduced amino acid sequences of the At-RanBP1s display high similarity (60%) to mammalian/yeast RanBP1 proteins and contain the characteristic Ran-binding domains. Furthermore, interaction of the plant Ran and RanBP1 proteins, is shown to require the acidic C-terminal domain (-DEDDDL) of Ran proteins in addition to the presence of an intact Ran-binding domain. In whole cell extracts, the GST-RanBP1a fusion protein binds specifically to GTP-Ran and will not interact with Rab/Ypt-type small GTP-binding proteins. Finally, in good agreement with their proposed biological function, the At-Ran and the At-RanBP genes are expressed coordinately and show the highest level of expression in meristematic tissues.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号