首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical genetic analysis of the role of methylthioadenosine phosphorylase in a murine lymphoid cell line
Authors:M Kubota  N Kamatani  D A Carson
Abstract:The enzyme methylthioadenosine phosphorylase functions in both purine and polyamine metabolism is dividing mammalian cells. To determine the effects of the loss of this enzyme on cell growth and metabolism, we selected two methylthioadenosine phosphorylase-deficient mutant clones of the transplantable murine T lymphoma cell line R1.1. The first had 3.5% of wild type methylthioadenosine phosphorylase activity. The second was completely enzyme-deficient. The loss of the enzyme did not alter the growth rate, cloning efficiency, or tumor-forming ability of the T lymphoma cells. The methylthioadenosine phosphorylase-deficient clones excreted substantial amounts of methylthioadenosine into the culture medium (0.13 and 0.32 nmol/h/mg of protein, respectively) and were unable to utilize the methylthioadenosine phosphorylase substrate 2',5'-dideoxyadenosine as a purine source when de novo purine synthesis was blocked. Spermine levels were 10-20% lower in the enzyme-deficient clones than in wild type cells. The loss of methylthioadenosine phosphorylase rendered the mutants exquisitely sensitive to the antiproliferative effects of methylthioadenosine. Methylthioadenosine at 3-6 microM inhibited their growth by 50%. The toxic effects of methylthioadenosine were not attributable to inhibition of purine, pyrimidine, or polyamine synthesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号