首页 | 本学科首页   官方微博 | 高级检索  
     


Development of macroporous poly(ethylene glycol) hydrogel arrays within microfluidic channels
Authors:Lee Andrew G  Arena Christopher P  Beebe David J  Palecek Sean P
Affiliation:Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States.
Abstract:The mass transport of solutes through hydrogels is an important design consideration in materials used for tissue engineering, drug delivery, and protein arrays used to quantify protein concentration and activity. We investigated the use of poly(ethylene glycol) (PEG) as a porogen to enhance diffusion of macromolecules into the interior of polyacrylamide and PEG hydrogel posts photopatterned within microfluidic channels. The diffusion of GST-GFP and dextran-FITC into hydrogels was monitored and effective diffusion coefficients were determined by fitting to the Fickian diffusion equations. PEG-diacrylate (M(r) 700) with porogen formed a macroporous structure and permitted significant penetration of 250 kDa dextran. Proteins copolymerized in these macroporous hydrogels retained activity and were more accessible to antibody binding than proteins copolymerized in nonporous gels. These results suggest that hydrogel macroporosity can be tuned to regulate macromolecular transport in applications such as tissue engineering and protein arrays.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号