首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation
Authors:Mizukami Yoichi  Iwamatsu Akihiro  Aki Toshihiko  Kimura Masayasu  Nakamura Kazuyuki  Nao Tomoko  Okusa Tomoko  Matsuzaki Masunori  Yoshida Ken-Ichi  Kobayashi Sei
Institution:Center for Gene Research, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan. mizukami@yamaguchi-u.ac.jp
Abstract:Extracellular signal-regulated kinase 1/2 (ERK1/2) is known to function in cell survival in response to various stresses; however, the mechanism of cell survival by ERK1/2 remains poorly elucidated in ischemic heart. Here we applied functional proteomics by two-dimensional electrophoresis to identify a cellular target of ERK1/2 in response to ischemic hypoxia. Approximately 1500 spots were detected by Coomassie Brilliant Blue staining of a sample from unstimulated cells. The staining intensities of at least 50 spots increased at 6-h reoxygenation after 2-h ischemic hypoxia. Of the 50 spots that increased, at least 4 spots were inhibited in the presence of PD98059, a MEK inhibitor. A protein with a molecular mass of 52 kDa that is strongly induced by ERK1/2 activation in response to ischemic hypoxia and reoxygenation was identified as alpha-enolase, a rate-limiting enzyme in the glycolytic pathway, by liquid chromatography-mass spectrometry and amino acid sequencing. The expressions of the alpha-enolase mRNA and protein are inhibited during reoxygenation after ischemic hypoxia in the cells containing a dominant negative mutant of MEK1 and treated with a MEK inhibitor, PD98059, leading to a decrease in ATP levels. alpha-Enolase expression is also observed in rat heart subjected to ischemia-reperfusion. The induction of alpha-enolase by ERK1/2 appears to be mediated by c-Myc. The introduction of the alpha-enolase protein into the cells restores ATP levels and prevents cell death during ischemic hypoxia and reoxygenation in these cells. These results show that alpha-enolase expression by ERK1/2 participates in the production of ATP during reoxygenation after ischemic hypoxia, and a decrease in ATP induces apoptotic cell death. Furthermore, alpha-enolase improves the contractility of cardiomyocytes impaired by ischemic hypoxia. Our results reveal that ERK1/2 plays a role in the contractility of cardiomyocytes and cell survival through alpha-enolase expression during ischemic hypoxia and reoxygenation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号