首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of sodium and magnesium-ion interactions on chromatin structure and solubility
Authors:D K Dixon  G D Burkholder
Abstract:The effects of sodium and magnesium-ion interactions on chromatin structure and solubility were examined in isolated mouse liver nuclei. To facilitate this study, a simple assay of chromatin structure was developed, based on the absorbances at 260 nm (A260) and 320 nm (A320) of nuclei in test solutions. By subtracting the A320 from the A260, a single "spectral index" was obtained which served as a useful, but not absolute, indicator of chromatin structure. Electron microscopy verified the validity of this approach. The results indicate that either 200 mM NaCl or 0.5 mM MgCl2 were capable of preserving the native 20 to 30 nm chromatin fiber structure. Below 200 mM NaCl, the native fiber progressively uncoiled to the 10 nm unit fiber. The presence of 0.5 mM MgCl2 inhibited this uncoiling. Only divalent cations stabilized condensed chromatin (heterochromatin) within the nucleus. Monovalent and divalent cations interacted with one another at critical concentrations and modified their individual effects on chromatin structure; e.g., 10 to 25 mM NaCl interfered with the action of 0.5 to 1.5 mM MgCl2, causing a complete loss of condensed chromatin. Maximum solubility of micrococcal nuclease-digested chromatin occurred at 10 mM NaCl, which treatment allowed the chromatin to unfold to the 10 nm fiber. However, ionic conditions that disrupted condensed chromatin but maintained the native chromatin fiber morphology still resulted in relatively high yields of soluble chromatin. Minimum solubility occurred under conditions which preserved the structure of condensed chromatin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号