首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reduced susceptibility of nonobese diabetic mice to TNF-alpha and D-galactosamine-mediated hepatocellular apoptosis and lethality
Authors:Bahjat F R  Dharnidharka V R  Fukuzuka K  Morel L  Crawford J M  Clare-Salzler M J  Moldawer L L
Institution:Departments of. Surgery, Pathology, Pediatrics, and Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA.
Abstract:Nonobese diabetic (NOD/LtJ or NOD) mice are resistant to doses of LPS and D-galactosamine that uniformly produce lethality in C57BL/6J (B6) mice (p < 0.01). Liver caspase-3-like activity, serum transaminase levels (both p < 0.05), and the numbers of apoptotic liver nuclei were also reduced in NOD compared with B6 mice treated with LPS (100 ng) and D-galactosamine (8 mg). NOD mice were also at least 100-fold more resistant to recombinant human TNF-alpha and D-galactosamine treatment than B6 mice (p < 0.001). Binding of recombinant human TNF-alpha to splenocytes from NOD mice was similar to that seen in B6 mice, suggesting that the defect in responsiveness was not due to an inability of recombinant human TNF-alpha to bind the NOD TNF type 1 (p55) receptor. Because the TNF type 1 (p55) receptor shares a common signaling pathway with Fas (CD95), NOD and B6 mice were treated with the Fas agonist antibody, Jo-2. Surprisingly, NOD mice were as sensitive as B6 mice to Fas-induced lethality and hepatic injury. In addition, primary hepatocytes isolated from NOD mice and cultured in vitro in the presence of D-galactosamine with or without TNF-alpha were found to be resistant to apoptosis and cytotoxicity when compared with B6 mice. In contrast, Jo-2 treatment produced similar increases in caspase-3 activity and cytotoxicity in primary hepatocytes from NOD and B6 mice. The resistance to LPS- and TNF-alpha-mediated lethality and hepatic injury in D-galactosamine-sensitized NOD mice is apparently due to a post-TNFR binding defect, and independent of signaling pathways shared with Fas.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号