首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Targeted control of kinetics of beta-amyloid self-association by surface tension-modifying peptides
Authors:Kim Jin Ryoun  Gibson Todd J  Murphy Regina M
Institution:Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Abstract:Brain tissue from Alzheimer's patients contains extracellular senile plaques composed primarily of deposits of fibrillar aggregates of beta-amyloid peptide. beta-Amyloid aggregation is postulated to be a major factor in the onset of this neurodegenerative disease. Recently proposed is the hypothesis that oligomeric intermediates, rather than fully formed insoluble fibrils, are cytotoxic. Previously, we reported the discovery of peptides that accelerate beta-amyloid aggregation yet inhibit toxicity in vitro, in support of this hypothesis. These peptides contain two domains: a recognition element designed to bind to beta-amyloid and a disrupting element that alters beta-amyloid aggregation kinetics. Here we show that the aggregation rate-enhancing activity of the disrupting element correlates strongly with its ability to increase surface tension of aqueous solutions. Using the Hofmeister series as a guide, we designed a novel peptide with terminal side-chain trimethylammonium groups in the disrupting domain. The derivatized peptide greatly increased solvent surface tension and accelerated beta-amyloid aggregation kinetics by severalfold. Equivalent increases in surface tension in the absence of a recognition domain had no effect on beta-amyloid aggregation. These results suggest a novel strategy for targeting localized changes in interfacial energy to specific proteins, as a way to selectively alter protein folding, stability, and aggregation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号