Use of Anisotropy, 3D Segmented Atlas,and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex |
| |
Authors: | Praveen Kulkarni William Kenkel Seth P. Finklestein Thomas M. Barchet JingMei Ren Mathew Davenport Martha E. Shenton Zora Kikinis Mark Nedelman Craig F. Ferris |
| |
Affiliation: | 1Northeastern University, Boston, Massachusetts, United States of America;2Biotrofix, Waltham, Massachusetts, United States of America;3Brigham and Women''s Hospital, Boston, Massachusetts, United States of America;4Ekam Imaging, Boston, Massachusetts, United States of America;University of Pennsylvania, UNITED STATES |
| |
Abstract: | Traumatic brain injury (TBI) can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA) for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1) the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2) the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3) the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion. |
| |
Keywords: | |
|
|