首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complement receptor-mediated phagocytosis is associated with accumulation of phosphatidylcholine-derived diglyceride in human neutrophils. Involvement of phospholipase D and direct evidence for a positive feedback signal of protein kinase.
Authors:M F?llman  M Gullberg  C Hellberg  T Andersson
Institution:Department of Cell Biology, University of Link?ping, Sweden.
Abstract:Complement receptor (CR)-mediated phagocytosis is associated with an increased accumulation of diglyceride (sn-1,2-diacylglycerol and/or 1-O-alkyl-2-acyl-glycerol) in human neutrophils. The C3bi-mediated increase in diglyceride (5-20 min) was only partially impaired when phosphoinositide-specific phospholipase C (PLC) activity was abolished by reduction of cytosolic free Ca2+. At an early time point (1 min), however, diglyceride production was barely detectable in control cells, whereas production was considerable in cells with a reduced cytosolic free Ca2+ concentration. C3bi stimulation of 32P-labeled neutrophils caused a rapid and significant breakdown of 32P]phosphatidylcholine (PC) which was not affected by inhibition of Ca(2+)-dependent phosphoinositide-specific PLC. Thus, PC hydrolysis could be involved in C3bi-induced diglyceride formation. Stimulation of cells labeled with 3H]1-O-alkyl-lyso-PC (3H]alkyl-lyso-PC), resulted in an increased formation of 3H]1-O-alkyl-phosphatidic acid (3H]alkyl-PA) and a later and slower formation of 3H]1-O-alkyl-diglyceride (3H]alkyl-diglyceride); this suggests activation of phospholipase D (PLD). When these labeled cells were stimulated in the presence of 0.5% ethanol a marked accumulation of 3H]1-O-alkyl-phosphatidylethanol (3H]alkyl-PEt) was observed in both controls and calcium-reduced cells, further strengthening the suggested involvement of PLD activity. In parallel with the sustained increase in diglyceride formation, CR-mediated phagocytosis was also associated with phosphorylation of a cellular protein kinase C substrate (MARCKS). Therefore it seems reasonable to suggest a causal relationship between C3bi-induced PLD activation, which results in diglyceride formation, and activation of protein kinase C. In electropermeabilized cells which were incapable of ingesting particles, C3bi particles were still able to activate PLD and induce formation of diglyceride. This signaling event must therefore be triggered by binding of particles to the cell and not by the engulfment process. Most importantly, introduction of the protein kinase C inhibitor peptides, PKC(19-36) and PKC(19-31), into these permeabilized cells resulted in a clear reduction of the C3bi-induced production of diglyceride, indicating that CR-mediated activation of protein kinase C directly triggers a positive feedback mechanism for additional diglyceride formation. Taken together, these data further clarify the mechanisms of CR-mediated diglyceride formation and give added support to the concept that protein kinase C plays an important role in the phagocytic process.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号