首页 | 本学科首页   官方微博 | 高级检索  
     


Tyrosine residues affecting sodium stimulation of carnitine transport in the OCTN2 carnitine/organic cation transporter
Authors:Amat di San Filippo Cristina  Longo Nicola
Affiliation:Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah 84132, USA.
Abstract:Primary carnitine deficiency is a disorder of fatty acid oxidation caused by mutations in the Na+-dependent carnitine/organic cation transporter OCTN2. Studies with tyrosyl group-modifying reagents support the involvement of tyrosine residues in Na+ binding by sodium-coupled transporters. Here we report two new patients with carnitine deficiency caused by mutations affecting tyrosyl residues (Y447C and Y449D) close to a residue (Glu-452) previously shown to affect sodium stimulation of carnitine transport. Kinetic analysis indicated that the Y449D substitution, when expressed in Chinese hamster ovary cells, increased the concentration of sodium required to half-maximally stimulate carnitine transport from 14.8 +/- 1.8 to 34.9 +/- 5.8 mM (p<0.05), whereas Y447C completely abolished carnitine transport. Substitution of these tyrosine residues with phenylalanine restored normal carnitine transport in Y449F but resulted in markedly impaired carnitine transport by Y447F. This was associated with an increase in the concentration of sodium required to half-maximally stimulate carnitine transport to 57.8 +/- 7.4 mM (p<0.01 versus normal OCTN2). The Y447F and Y449D mutant transporters retained their ability to transport the organic cation tetraethylammonium indicating that their effect on carnitine transport was specific and likely associated with the impaired sodium stimulation of carnitine transport. By contrast, the Y447C natural mutation abolished the transport of organic cations in addition to carnitine. Confocal microscopy of OCTN2 transporters tagged with green fluorescent protein indicated that the Y447C mutant transporters failed to reach the plasma membrane, whereas Y447F, Y449D, and Y449F had normal membrane localization. These natural mutations identify tyrosine residues possibly involved in coupling the sodium electrochemical gradient to transmembrane solute transfer in the sodium-dependent co-transporter OCTN2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号