首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reduction of Nitrite and Nitrate to Ammonium on Pyrite
Authors:Soujanya Singireddy  Alexander D Gordon  Alexander Smirnov  Michael A Vance  Martin A A Schoonen  Robert K Szilagyi  Daniel R Strongin
Institution:Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA, soujanya@temple.edu.
Abstract:An important constraint on the formation of the building blocks of life in the Hadean is the availability of small, activated compounds such as ammonia (NH(3)) relative to its inert dinitrogen source. Iron-sulfur particles and/or mineral surfaces have been implicated to provide the catalytic active sites for the reduction of dinitrogen. Here we provide a combined kinetic, spectroscopic, and computational modeling study for an alternative source of ammonia from water soluble nitrogen oxide ions. The adsorption of aqueous nitrite (NO (2) (-) ) and nitrate (NO (3) (-) ) on pyrite (FeS(2)) and subsequent reduction chemistry to ammonia was investigated at 22°C, 70°C, and 120°C. Batch geochemical and in situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy experiments were used to determine the reduction kinetics to NH(3) and to elucidate the identity of the surface complexes, respectively, during the reaction chemistry of NO (2) (-) and NO (3) (-) . Density functional theory (DFT) calculations aided the interpretation of the vibrational data for a representative set of surface species. Under the experimental conditions used in this study, we detected the adsorption of nitric oxide (NO) intermediate on the pyrite surface. NH(3) production from NO (2) (-) occurred at 70 and 120°C and from NO (3) (-) occurred only at 120°C.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号