Energy expenditures for flight,aerodynamic quality,and colonization of forest habitats by birds |
| |
Authors: | V. M. Gavrilov |
| |
Affiliation: | 1.Biological Faculty and Zvenigorod Biological Station,Moscow State University,Moscow,Russia |
| |
Abstract: | The power that the birds can use for flight (available power) and the power required for flight according to physical laws (requisite power) grow with an increase in body mass, the exponents of the corresponding functions being different. Small birds can follow different strategies, either improving the aerodynamic quality of the body (thereby saving the excess available power) or sacrifice aerodynamic quality in favor of morphological adaptation to factors other than the demands of flight proper, which provides the possibility of utilizing a wider range of ecological niches. A hypothesis is proposed that the high metabolic rate of passerine birds, compared to representatives of other bird orders, is an adaptation to maneuverable (i.e., relatively low-speed) flight necessary for successful colonization of forest habitats. The speed that birds of such size can develop according to the scaling theory is too high for nesting and foraging in tree crowns, and its reduction is possible in two ways: by increasing air drag or by changing the style of flight (by analogy with airplane vs. helicopter). The first way is feasible, but a high air drag due to morphological modifications (e.g., in the size of the tail or characteristics of the wing) interferes with the possibility of long-distance migration flight, as energy expenditures for it will exceed the energy potential of the bird. This is why migratory nonpasserine birds, which have used this strategy, are practically absent in forests of the temperate zone. Therefore, more promising is the second way involving transition to a new flight style and, in a certain sense, to a new morphophysiological organization. Passerines have achieved this by changing their flight style so that the wing actively generates forces (lift and thrust) only in downstroke. Such a flight requires more energy, and, to provide it in sufficient amounts, passerine birds have increased their basal metabolic rate (BMR). Thus, both their flight energy expenditures and BMR are higher than in nonpasserines. Remarkably, among approximately 8660 extant bird species known today, more than half (about 5100 species) belong to the order Passeriformes. Such a ratio, unknown in any other vertebrate class, is evidence that passerines have gained a considerable biological advantage over all other birds due to their increased BMR. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|