Calcium sensing receptor activation by a calcimimetic suggests a link between cooperativity and intracellular calcium oscillations |
| |
Authors: | Miedlich Susanne Gama Lucio Breitwieser Gerda E |
| |
Affiliation: | Department of Biology, Syracuse University, 108 College Place, Syracuse, New York 13244, USA. |
| |
Abstract: | Activation of the calcium sensing receptor (CaR) by small increments in extracellular calcium (Ca(2+)(e)) induces intracellular calcium (Ca(2+)(i)) oscillations that are dependent on thapsigargin-sensitive intracellular calcium stores. Phenylalkylamines such as NPS R-568 are allosteric modulators (calcimimetics) that activate CaR by increasing the apparent affinity of the receptor for calcium. We determined, by fluorescence imaging with fura-2, whether the calcimimetic NPS R-568 could activate Ca(2+)(i) oscillations in HEK-293 cells expressing human CaR. NPS R-568 was more potent than Ca(2+)(e) at eliciting Ca(2+)(i) oscillations, particularly at low [Ca(2+)](e) (as low as 0.1 mm). The oscillation frequencies elicited by NPS R-568 varied over a 2-fold range from peak to peak intervals of 60-70 to 30-45 s, depending upon the concentrations of both Ca(2+)(e) and NPS R-568. Finally, NPS R-568 induced sustained (>15 min after drug removal) Ca(2+)(i) oscillations, suggesting slow release of the drug from its binding site. We exploited the potency of NPS R-568 for eliciting Ca(2+)(i) oscillations for structural studies. Truncation of the CaR carboxyl terminus from 1077 to 886 amino acids had no effect on the ability of Ca(2+) or NPS R-568 to induce Ca(2+)(i) oscillations, but further truncation (to 868 amino acids) eliminated both highly cooperative Ca(2+)-dependent activation and regular Ca(2+)(i) oscillations. Alanine scanning within the amino acid sequence from Arg(873) to His(879) reveals a linkage between the cooperativity for Ca(2+)-dependent activation and establishment and maintenance of intracellular Ca(2+) oscillations. The amino acid residues critical to both functions of CaR may contribute to interactions with either G proteins or between CaR monomers within the functional dimer. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|