首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling biofilm antimicrobial resistance
Authors:Dodds M G  Grobe K J  Stewart P S
Affiliation:Center for Biofilm Engineering, and Department of Chemical Engineering, Montana State University, Bozeman, Montana 59717, USA.
Abstract:A computer model capable of integrating mechanisms of biofilm resistance to disinfection by antimicrobial agents was developed. Resistance mechanisms considered included retarded penetration due to a stoichiometric reaction between the antimicrobial agent and biomass, incomplete penetration due to a catalytic reaction between the antimicrobial agent and the biomass, and the existence of a fraction of the cells in a resistant phenotypic state. Mathematical models of these processes were derived and solved in the computer simulation package MATLAB. Four sets of fitted experimental data on the disinfection of Pseudomonas aeruginosa biofilms were fit to each of the three models. No one model fit all of the data sets adequately. Killing of a 2-day old biofilm by tobramycin was best described by the physiological limitation model. Killing by hypochlorite was best described by the stoichiometric transport model. Killing by hydrogen peroxide was best simulated by the catalytic transport model. These results suggest that multiple mechanisms of biofilm reduced susceptibility are manifested even in biofilms of the same species and that the particular resistance mechanism depends on the biofilm age, antimicrobial agent, and biofilm thickness. The models presented in this article may be useful for diagnosing mechanisms of biofilm resistance from experimental data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号