首页 | 本学科首页   官方微博 | 高级检索  
     


Resisting arrest: recovery from checkpoint arrest through dephosphorylation of Chk1 by PP1
Authors:den Elzen Nicole  Kosoy Ana  Christopoulos Helen  O'Connell Matthew J
Affiliation:Institute for Molecular Bioscience, Queensland Bioscience Precinct, University of Queensland, St Lucia, Australia.
Abstract:The G2 DNA damage checkpoint prevents mitotic entry in the presence of damaged DNA, and thus is essential for cells to replicate with stable genetic inheritance. Whilst significant progress has been made in the past 10 years on the mechanism of checkpoint activation, little attention has been paid to how the DNA damage checkpoint is switched off to allow cell cycle re-entry. Insight into the mechanism of cell cycle re-entry was recently provided by our finding that the Schizosaccharomyces pombe type 1 phosphatase (PP1) Dis2 dephosphorylates the checkpoint effector kinase Chk1. This occurs on a site phosphorylated by the ATR homologue Rad3 in response to DNA damage, and results in Chk1 inactivation and checkpoint release. Here we discuss the implications of this finding on DNA damage checkpoint signaling, and speculate on models for checkpoint maintenance and release.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号