首页 | 本学科首页   官方微博 | 高级检索  
     


A scaling approach for quantifying the net CO2 flux of the Kuparuk River Basin,Alaska
Authors:Walter C. Oechel  George L. Vourlitis  Joseph Verfaillie  Tim Crawford  Steve Brooks  Edward Dumas  Allen Hope  Douglas Stow  Bill Boynton  Viktor Nosov  Rommel Zulueta
Abstract:Net CO2 flux measurements conducted during the summer and winter of 1994–96 were scaled in space and time to provide estimates of net CO2 exchange during the 1995–96 (9 May 1995–8 May 1996) annual cycle for the Kuparuk River Basin, a 9200 km2 watershed located in NE Alaska. Net CO2 flux was measured using dynamic chambers and eddy covariance in moist‐acidic, nonacidic, wet‐sedge, and shrub tundra, which comprise 95% of the terrestrial landscape of the Kuparuk Basin. CO2 flux data were used as input to multivariate models that calculated instantaneous and daily rates of gross primary production (GPP) and whole‐ecosystem respiration (R) as a function of meteorology and ecosystem development. Net CO2 flux was scaled up to the Kuparuk Basin using a geographical information system (GIS) consisting of a vegetation map, digital terrain map, dynamic temperature and radiation fields, and the models of GPP and R. Basin‐wide estimates of net CO2 exchange for the summer growing season (9 May?5 September 1995) indicate that nonacidic tundra was a net sink of ?31.7 ± 21.3 GgC (1 Gg = 109 g), while shrub tundra lost 32.5 ± 6.3 GgC to the atmosphere (negative values denote net ecosystem CO2 uptake). Acidic and wet sedge tundra were in balance, and when integrated for the entire Kuparuk River Basin (including aquatic surfaces), whole basin summer net CO2 exchange was estimated to be in balance (?0.9 ± 50.3 GgC). Autumn to winter (6 September 1995–8 May 1996) estimates of net CO2 flux indicate that acidic, nonacidic, and shrub tundra landforms were all large sources of CO2 to the atmosphere (75.5 ± 8.3, 96.4 ± 11.4, and 43.3 ± 4.7 GgC for acidic, nonacidic, and shrub tundra, respectively). CO2 loss from wet sedge surfaces was not substantially different from zero, but the large losses from the other terrestrial landforms resulted in a whole basin net CO2 loss of 217.2 ± 24.1 GgC during the 1995–96 cold season. When integrated for the 1995–96 annual cycle, acidic (66.4 + 25.25 GgC), nonacidic (64.7 ± 29.2 GgC), and shrub tundra (75.8 ± 8.4 GgC) were substantial net sources of CO2 to the atmosphere, while wet sedge tundra was in balance (0.4 + 0.8 GgC). The Kuparuk River Basin as a whole was estimated to be a net CO2 source of 218.1 ± 60.6 GgC over the 1995–96 annual cycle. Compared to direct measurements of regional net CO2 flux obtained from aircraft‐based eddy covariance, the scaling procedure provided realistic estimates of CO2 exchange during the summer growing season. Although winter estimates could not be assessed directly using aircraft measurements of net CO2 exchange, the estimates reported here are comparable to measured values reported in the literature. Thus, we have high confidence in the summer estimates of net CO2 exchange and reasonable confidence in the winter net CO2 flux estimates for terrestrial landforms of the Kuparuk river basin. Although there is larger uncertainty in the aquatic estimates, the small surface area of aquatic surfaces in the Kuparuk river basin (≈ 5%) presumably reduces the potential for this uncertainty to result in large errors in basin‐wide CO2 flux estimates.
Keywords:Arctic  global change  ecophysiology  eddy covariance  trace‐gas flux  tundra
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号