Affiliation: | 1.Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41635-1914, Rasht, 4193833697, Guilan, Iran ; |
Abstract: | To predict the biological effects of ionising radiation, the quantity of biological dose is introduced instead of the physical absorbed dose. In proton therapy, a constant relative biological effectiveness (RBE) of 1.1 is usually applied clinically as recommended by the International Commission of Radiation Units and Measurements. This study presents a new model, based on the modified microdosimetric kinetic model (MMKM), for calculating variable RBE values based on experimental data on the induction of DNA double-strand breaks (DSBs) within cells. The MMKM was proposed based on experimental data for the yield of DSBs in mammalian cells, which allows modification of the yield of primary lesions in the MKM. In this approach, a unique function named f(LET), which describes the relation between RBE and linear energy transfer (LET), was considered for charged particles. In the presented model (DMMKM), the MMKM approach was developed further by considering different f(LET)s for different relevant ions involved in energy deposition events in proton therapy. Although experimental data represent the dependence of the yield of primary lesions on the ion species, the DSB yield (assumed as the main primary lesion) is assumed independent of the ion species in the MMKM. In the DMMKM, by considering the yield of primary lesions as a function of the ion species, the α and β values are in better agreement with the experimental data as compared to those of the MKM and MMKM approaches. The biological dose in the DMMKM is predicted to be lower than that in the MMKM. Further, in the proposed model, the variation of the β parameter is higher than the constant value assumed in the MKM, at the distal end of the spread-out Bragg peak (SOBP). Moreover, the level of cell death estimated by the MMKM at the SOBP region is higher than that obtained based on the DMMKM. It is concluded that considering modified f(LET)s in the model developed here is more consistent with experimental results than when MMKM and MKM approaches are considered. The DMMKM examines the biological effects with full detail and will, therefore, be effective in improving proton therapy. |