首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of Dendritic Filopodial Interactions by ZO-1 and Implications for Dendrite Morphogenesis
Authors:Ryouhei Komaki  Hideru Togashi  Yoshimi Takai
Institution:1. Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.; 2. Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.; 3. CREST, Japan Science and Technology Agency, Kobe, Japan.; University of Nebraska Medical Center, United States of America,
Abstract:Neuronal dendrites dynamically protrude many fine filopodia in the early stages of neuronal development and gradually establish complex structures. The importance of the dendritic filopodia in the formation of axo-dendritic connections is established, but their role in dendrite morphogenesis remains unknown. Using time-lapse imaging of cultured rat hippocampal neurons, we revealed here that many filopodia dynamically protruded from dendrites and transiently interacted with each other to form dendritic filopodia-filopodia contacts in the early stages of neuronal development. The MAGUK family member, Zonula Occludens-1 (ZO-1), which is known to be associated with the nectin and cadherin cell adhesion systems, was concentrated at these dendritic filopodia-filopodia contact sites and also at the tips of free dendritic filopodia. Overexpression of ZO-1 increased the formation of dendritic filopodia and their interactions, and induced abnormal dendrite morphology. Conversely, knockdown of ZO-1 decreased the formation of dendritic filopodia and their interactions, and induced abnormal dendrite morphology which was different from that induced by the overexpression of ZO-1. The components of the nectin and cadherin systems were co-localized with ZO-1 at the dendritic filopodia-filopodia contact sites, but not at the tips of free dendritic filopodia. Overexpression of ZO-1 increased the accumulation of these cell adhesive components at the dendritic filopodia-filopodia contact sites and stabilized their interactions, whereas knockdown of ZO-1 reduced their accumulation at the dendritic filopodia-filopodia contact sites. These results indicate that ZO-1 regulates dendritic filopodial dynamics, which is implicated in dendrite morphogenesis cooperatively with the nectin and cadherin systems in cultured neurons.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号