首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Focus Issue on Calcium Signaling: Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming
Authors:Kristiina Laanemets  Benjamin Brandt  Junlin Li  Ebe Merilo  Yong-Fei Wang  Malik M Keshwani  Susan S Taylor  Hannes Kollist  Julian I Schroeder
Abstract:Guard cells use compensatory feedback controls to adapt to conditions that produce excessively open stomata.In the past 15 years or more, many mutants that are impaired in stimulus-induced stomatal closing and opening have been identified and functionally characterized in Arabidopsis (Arabidopsis thaliana), leading to a mechanistic understanding of the guard cell signal transduction network. However, evidence has only recently emerged that mutations impairing stomatal closure, in particular those in slow anion channel SLOW ANION CHANNEL-ASSOCIATED1 (SLAC1), unexpectedly also exhibit slowed stomatal opening responses. Results suggest that this compensatory slowing of stomatal opening can be attributed to a calcium-dependent posttranslational down-regulation of stomatal opening mechanisms, including down-regulation of inward K+ channel activity. Here, we discuss this newly emerging stomatal compensatory feedback control model mediated via constitutive enhancement (priming) of intracellular Ca2+ sensitivity of ion channel activity. The CALCIUM-DEPENDENT PROTEIN KINASE6 (CPK6) is strongly activated by physiological Ca2+ elevations and a model is discussed and open questions are raised for cross talk among Ca2+-dependent and Ca2+-independent guard cell signal transduction pathways and Ca2+ sensitivity priming mechanisms.Stomatal pores formed by two guard cells enable CO2 uptake from the atmosphere, but also ensure leaf cooling and provide a pulling force for nutrient uptake from the soil via transpiration. These vitally important processes are inevitably accompanied by water loss through stomata. Stomatal opening and closure is caused by the uptake and release of osmotically active substances and is tightly regulated by signaling pathways that lead to the activation or inactivation of guard cell ion channels and pumps. Potassium ions enter guard cells through the inward-rectifying K+ channels (K+in) during stomatal opening and are released via outward-rectifying K+ channels during stomatal closure (Schroeder et al., 1987; Hosy et al., 2003; Roelfsema and Hedrich 2005). Cytosolic Ca2+, an important second messenger in plants, mediates ion channel regulation, particularly down-regulation of inward-conducting K+in channels and activation of S-type anion channels, thus mediating stomatal closure and inhibiting stomatal opening (Schroeder and Hagiwara, 1989; Dodd et al., 2010; Kim et al., 2010). Stomatal closure is initiated by anion efflux via the slow S-type anion channel SLAC1 (Negi et al., 2008; Vahisalu et al., 2008; Kollist et al., 2011) and the voltage-dependent rapid R-type anion channel QUICK-ACTIVATING ANION CHANNEL1 (Meyer et al. 2010; Sasaki et al., 2010).In recent years, advances have been made toward understanding mechanisms mediating abscisic acid (ABA)-induced stomatal closure (Cutler et al., 2010; Kim et al., 2010; Raghavendra et al., 2010). The core ABA signaling module, consisting of PYR/RCAR (for pyrabactin resistance 1/regulatory components of ABA receptors) receptors, clade A protein phosphatases (PP2Cs), SNF-related protein kinase OPEN STOMATA1 (OST1), and downstream targets, is Ca2+-independent (Ma et al., 2009; Park et al., 2009; Hubbard et al., 2010). However, ABA-induced stomatal closure was reduced to only 30% of the normal stomatal closure response under conditions that inhibited intracellular cytosolic free calcium (Ca2+]cyt) elevations in Arabidopsis (Siegel et al., 2009), consistent with previous findings in other plants (De Silva et al., 1985; Schwartz, 1985; McAinsh et al., 1991; MacRobbie, 2000). Together these and other studies show the importance of Ca2+]cyt for a robust ABA-induced stomatal closure. Here, we discuss Ca2+-dependent and Ca2+-independent signaling pathways in guard cells and open questions on how these may work together.Plants carrying mutations in the SLAC1 anion channel have innately more open stomata, and exhibit clear impairments in ABA-, elevated CO2-, Ca2+-, ozone-, air humidity-, darkness-, and hydrogen peroxide-induced stomatal closure (Negi et al., 2008; Vahisalu et al., 2008; Merilo et al., 2013). Recent research, however, unexpectedly revealed that mutations in SLAC1 also down-regulate stomatal opening mechanisms and slow down stomatal opening (Laanemets et al., 2013).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号