首页 | 本学科首页   官方微博 | 高级检索  
   检索      

灵芝尿嘧啶营养缺陷型菌株的筛选和分子鉴定
引用本文:周陈力,万佳宁,卢绪志,茅文俊,唐利华,吴莹莹,鲍大鹏.灵芝尿嘧啶营养缺陷型菌株的筛选和分子鉴定[J].微生物学通报,2019,46(10):2657-2664.
作者姓名:周陈力  万佳宁  卢绪志  茅文俊  唐利华  吴莹莹  鲍大鹏
作者单位:上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室 上海 201403,上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室 上海 201403,上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室 上海 201403,上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室 上海 201403,上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室 上海 201403,上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室 上海 201403,上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室 上海 201403
基金项目:重要食药用菌种质资源库和基因组数据库的构建(17391900400);上海市科学技术委员会工程技术研究中心能力提升项目(16DZ2281300)
摘    要:【背景】营养缺陷型是一种应用广泛的分子标记,但是目前在灵芝中还未有研究和应用报道。【目的】为灵芝遗传转化研究、杂交育种和菌种鉴别提供亲本材料和技术支持。【方法】采用紫外光诱变、单单杂交、孢子单核化的方法从灵芝单核体菌株出发得到尿嘧啶营养缺陷型双核体菌株。【结果】获得8株稳定的尿嘧啶营养缺陷型单核体突变菌株和7株尿嘧啶营养缺陷型双核体菌株。【结论】灵芝尿嘧啶营养缺陷型菌株在添加外源营养物的基础上可恢复正常生长,可以为灵芝遗传转化体系的构建和灵芝育种提供材料。

关 键 词:灵芝,5-氟乳清酸,尿嘧啶营养缺陷型,双核体

Screening and molecular verification of uracil auxotrophic mutants of Ganoderma lucidum
ZHOU Chen-Li,WAN Jia-Ning,LU Xu-Zhi,MAO Wen-Jun,TANG Li-Hu,WU Ying-Ying and BAO Da-Peng.Screening and molecular verification of uracil auxotrophic mutants of Ganoderma lucidum[J].Microbiology,2019,46(10):2657-2664.
Authors:ZHOU Chen-Li  WAN Jia-Ning  LU Xu-Zhi  MAO Wen-Jun  TANG Li-Hu  WU Ying-Ying and BAO Da-Peng
Institution:Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; National Engineering Research Center of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai 201403, China,Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; National Engineering Research Center of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai 201403, China,Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; National Engineering Research Center of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai 201403, China,Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; National Engineering Research Center of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai 201403, China,Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; National Engineering Research Center of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai 201403, China,Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; National Engineering Research Center of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai 201403, China and Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; National Engineering Research Center of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai 201403, China
Abstract:Background] Auxotrophy is a widely applied biomarker in production and scientific research, but there is no report on Ganoderma lucidum. Objective] This study was conducted to provide parent strains and technique supports for genetics research, cross breeding and spawn identification of Ganoderma lucidum. Methods] The uracil auxotrophic mutant strains were obtained by UV mutagenesis of protoplast. The randomly selected uracil auxotrophic monokaryon strains were used as parents, and crossed with each other by Monkaryon-monkaryon mating to establish uracil auxotrophic dikaryons. Results] eight uracil auxotrophic mutant strains were obtained by UV mutagenesis of protoplast. seven uracil auxotrophic dikaryon strains were obtained by Monkaryon-monkaryon crossing. Conclusion] The testing results showed these auxotrophic strains restored their growth on PDA medium with uracil. The uracil auxotrophic dikaryon strains would be used as a tool for genetic transformation study and breeding.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《微生物学通报》浏览原始摘要信息
点击此处可从《微生物学通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号