首页 | 本学科首页   官方微博 | 高级检索  
     

海草根际微生物与海草植株的互作效应
引用本文:周卫国,丁德文,凌娟,林显程,杨清松,张颖,Manzoor Ahm,张燕英,董俊德. 海草根际微生物与海草植株的互作效应[J]. 微生物学报, 2019, 59(11): 2117-2129
作者姓名:周卫国  丁德文  凌娟  林显程  杨清松  张颖  Manzoor Ahm  张燕英  董俊德
作者单位:中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;中国科学院大学, 北京 100049,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;中国科学院大学, 北京 100049,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;中国科学院大学, 北京 100049,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;中国科学院大学, 北京 100049,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;中国科学院大学, 北京 100049,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;中国科学院海南热带海洋生物实验站, 海南 三亚 572000,中国科学院南海海洋研究所, 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;中国科学院海南热带海洋生物实验站, 海南 三亚 572000
基金项目:中国科学院战略性先导科技专项A (XDA13020300);国家自然科学基金(41676163,41406191,41276113,41276114);国家重点研发计划(2017YFC0506301,2018YFC1406500);广东省公益研究与能力建设专项资金(2015A020216016);广州市珠江科技新星(201806010017);广东省科技计划(2017B030314052)
摘    要:【目的】本文以三亚湾泰来草根际沉积物为主要研究对象,研究室内培养条件下泰来草根际沉积物微生物对于高温处理和海草定殖的响应。【方法】通过对培养过程中水体物理化学参数(如pH、溶解氧、磷酸盐、硝酸盐、亚硝酸盐和铵盐)的监测以分析环境因子的变化;16S rRNA扩增子测序研究微生物群落结构的动态响应;通过荧光定量分析16SrRNA基因丰度变化。【结果】研究表明高温处理组在培养35 d后海水中磷酸盐、硝酸盐、亚硝酸盐和铵盐含量以及pH均要高于模拟原位环境的对照组,高温处理组根际沉积物微生物丰度在培养过程中呈现先上升后降低的趋势,同时,高温处理组根际微生物中初始阶段由厚壁菌门(32.4%)、变形菌门(22.92%)和梭杆菌门(27.21%)占据优势,培养一段时间后,厚壁菌门和梭杆菌门大幅度减少,逐渐被蓝细菌门和放线菌门所替代,最终由变形菌门(51.1%)占据主导地位,其中,属于硫还原细菌的脱硫杆菌科(Desulfobacteraceae)和硫氧化细菌的螺杆菌科(Helicobacteraceae)的细菌丰度不断提高。【结论】揭示了海草的定殖会提高高温处理后沉积物的多样性,并塑造和改善其根际沉积物微生物群落组成。

关 键 词:海草  高温处理  海草定殖  根际沉积物  微生物多样性  微生物丰度
收稿时间:2018-11-27
修稿时间:2019-01-22

Seagrass-microbial interactions in the rhizosphere
Weiguo Zhou,Dewen Ding,Juan Ling,Xiancheng Lin,Qingsong Yang,Ying Zhang,Manzoor Ahma,Yanying Zhang and Junde Dong. Seagrass-microbial interactions in the rhizosphere[J]. Acta microbiologica Sinica, 2019, 59(11): 2117-2129
Authors:Weiguo Zhou  Dewen Ding  Juan Ling  Xiancheng Lin  Qingsong Yang  Ying Zhang  Manzoor Ahma  Yanying Zhang  Junde Dong
Affiliation:Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, Hainan Province, China and Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, Hainan Province, China
Abstract:[Objective] This research aims to investigate the response of rhizosphere microbial community after seagrass transplantation to high temperature treated seagrass sediment in Sanya Bay.[Methods] The environmental parameters including pH, dissolved oxygen, phosphate, nitrate, nitrite and ammonium were measured. High-throughput sequencing and real-time quantitative PCR of the 16S rRNA gene were used to analyze the diversity, structure and abundance of microbial communities in the rhizosphere of seagrass Thalassia hemperichii.[Results] The concentration of seawater nutrients (phosphate, nitrate, nitrite, ammonium) and pH were significantly higher in high temperature treatment group after 35 days. The abundance of 16S rRNA gene increased firstly and then reduced with the time. In addition, Firmutes (32.4%), Fusobacteria (27.21%) and Proteobacteria (22.92%) were the dominant phyla in rhizosphere in high temperature treatment group at the beginning of incubation period. But Firmutes and Fusobacteria were then decreased and replaced by Cyanobacteria and Actinobacteria over time. Proteobacteria (51.1%) dominated the rhizosphere microbial communities in the final phase. Moreover, Desulfobacteraceae belonging to sulfate-reducing bacteria and Helicobacteraceae affiliated with sulfate-oxidizing bacteria increased over time.[Conclusion] Colonization of seagrass would improve the microbial diversity of high temperature treated sediment, shape and change the microbial communities in rhizosphere.
Keywords:seagrass  high temperature processing  seagrass colonization  rhizosphere  microbial diversity  microbial abundance
本文献已被 CNKI 等数据库收录!
点击此处可从《微生物学报》浏览原始摘要信息
点击此处可从《微生物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号