Abstract: | According to previous authors, cytochrome b5, when extracted from bovine liver by a detergent method, is called cytochrome d-b5. On the other hand, the protein obtained after trypsin action, which eliminates an hydrophobic peptide of about 54 residues, is called cytochrome t-b5. Fluorescence polarization of the dansyl phosphatidylethanolamine probe inserted into phospholipid vesicles is very sensitive to the binding of proteins, and so is a useful method to study lipid-protein interactions. The chromophore mobility, R, decreases markedly when dipalmitoyl phosphatidylcholine vesicles are incubated with cytochrome d-b5, whereas R does not change for cytochrome c and cytochrome t-b5. This can be interpreted as a strengthening of bilayer, only due to the interaction of the hydrophobic peptide tail. Interaction of dipalmitoly phosphatidylcholine vesicles with cytochrome d-b5 occurs either below or above the melting temperature of the aliphatic chains (41 degrees C). Even for a high protein to lipid molar ratio (1 molecule of protein for 40 phospholipid molecules), the melting temperature is apparently unaffected. Phosphatidylserine and phosphatidylinositol do not interact at pH 7.7 with cytochrome d-b5, because electrostatic forces prevent formation of complexes. At low pH, the interaction with the protein occurs, but the binding is mainly of electrostatic nature. |