Abstract: | The origin of the age-associated degenerative processes in meniscal tissue is poorly understood and may be related to an imbalance of anabolic and catabolic metabolism. The aim of the current study was to compare medial menisci isolated from juvenile pigs and degenerated medial menisci from adult pigs in terms of gene expression profile and ultrastructure. Medial menisci were isolated from the knee joints of juvenile and adult pigs (n = 8 for each group). Degeneration was determined histologically according to a scoring system. In addition, the gene expression profiles of 14 genes encoding extracellular matrix proteins, catabolic matrix metalloproteinases and mediators of inflammation were analyzed. Changes in the ultrastructure of the collagen network of the meniscal tissue were analyzed by using transmission electron microscopy. The histologic analysis of menisci showed significantly higher grade of degeneration in tissue isolated from adult porcine knee joints compared with menisci isolated from juvenile knee joints. In particular, destruction of the collagen network was greater in adult menisci than in juvenile menisci. Degenerated menisci showed significantly decreased gene expression of COL1A1 and increased expression of MMP2, MMP13, and IL8. The menisci from adult porcine knee joints can serve as a model for meniscal degeneration. Degenerative changes were manifested as differences in histopathology, gene expression and ultrastructure of collagen network.Abbreviations: MMP, matrix metalloproteinase; SOX, sex-determining region box; VEGF, vascular endothelial growth factorMuch research is focused on the degeneration of connective tissue, particularly of the cartilage tissue that stabilizes the knee joint. The goal of the current study was to determine whether menisci in adult pigs show patterns of degeneration in the absence of previous major injuries, which might cause a secondary form of degeneration.In the mammalian knee joint, the incongruence between the femoral condyle and the tibial plateau is partially balanced by 2 C-shaped fibrocartilaginous menisci. These menisci absorb impact forces, help to distribute the mechanical load on the tibial plateau, and act as stabilizers of the knee joint.35,54 Therefore, menisci are thought to play an important role in the development of osteoarthritis in knee joints,39 as indicated by the results following meniscal resection.58 Both injuries13 and degeneration4 of meniscal tissue increase the risk of osteoarthritis of the knee joint. Because the self-repair mechanisms of meniscal tissue appear to be inadequate,9 more than 1 million surgical interventions on menisci are performed every year in the United States.27 In addition, degenerative changes in the meniscal tissue are believed to contribute to meniscal lesions.The main component of the meniscus is water (70%); and most of its dry weight is due to the protein collagen, mainly collagen I (98%).57 The ultrastructure of meniscal tissue consists of collagen fibers that are orientated circumferentially in the superficial layers. The intermediate layer consists of tangentially orientated collagen fibers.15 Other proteins involved in the extracellular matrix of meniscal tissue include collagen II and the proteoglycan aggrecan.15In addition, biglycan and fibromodulin have been found in porcine menisci.42The primary cells in meniscal tissue are chondrocytes which, in concert with fibroblasts, produce the extracellular matrix of fibrocartilage.55 In addition, chondrocytes produce the lubricant lubricin,56 which also is expressed in meniscal tissue.24,49Meniscal degeneration can be understood as an imbalance between anabolic and catabolic processes, as it has already been shown for articular cartilage.2 Changes in the gene expression of menisci from osteoarthritic knee joints including genes involved in immune and inflammatory responses as well as in tissue development have been previously shown.52 Furthermore, the production of the matrix proteins collagen types I, II, and III decreases during the progression of human meniscal degeneration.43 Changes in the gene expression profile of anabolic genes (for example, collagen I, collagen II, aggrecan) and catabolic genes (for example, matrix metalloproteinases) are early indicators of osteoarthritis.2,14,22,26,34,51 Therefore, additional studies analyzing the gene expression profiles of healthy and degenerated menisci are warranted to evaluate whether such marker genes also exist for meniscal tissue. As a next step, the ultrastructure of degenerated meniscal tissue should be evaluated to analyze the influence of an altered gene expression profile on the extracellular matrix of menisci.In general, pigs are an appropriate animal model in biomedical research because of their similarities to humans in terms of anatomy and metabolism.7,19,53 In meniscus research, goats30 and sheeps are well-established animal models.11,31,58 Nevertheless, the structure of porcine collagen is highly analogous to human collagen.3 This similarity was supported by the results of a comparison of the collagen in the hyaline cartilage among several species. 25 Because pathogenesis for osteoarthritis is similar between human and animal tissue,38 similarities in the pathophysiology of porcine and human meniscal tissue seem likely.The aim of the current study was to compare the medial menisci isolated from juvenile pigs with the degenerated medial menisci from adult pigs to determine whether differences in their gene expression profiles and ultrastructure are present. |