首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human umbilical cord-derived mesenchymal stem cells differentiate into epidermal-like cells using a novel co-culture technique
Authors:Dongjie Li  Jiake Chai  Chuanan Shen  Yanfu Han  Tianjun Sun
Institution:1. Department of Burn and Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, China
Abstract:Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) isolated from human umbilical Wharton’s Jelly are a population of primitive and pluripotent cells. In specific conditions, hUCMSCs can differentiate into various cells, including adipocytes, osteoblasts, chondrocytes, neurocytes, and endothelial cells. However, few studies have assessed their differentiation into epidermal cells in vitro. To assess the potential of hUCMSCs to differentiate into epidermal cells, a microporous membrane-based indirect co-culture system was developed in this study. Epidermal stem cells (ESCs) were seeded on the bottom of the microporous membrane, and hUCMSCs were seeded on the top of the microporous membrane. Cell morphology was assessed by phase contrast microscopy, and the expression of early markers of epidermal cell lineage, P63, cytokeratin19 (CK19), and β1-integrin, was determined by immunofluorescence, Western blot, and quantitative real-time PCR (Q-PCR) analyses. hUCMSC morphology changed from spindle-like to oblate or irregular with indirect co-culture with ESCs; they also expressed greater levels P63, CK19, and β1-integrin mRNA and protein compared to the controls (p < 0.01). As compared to normal co-cultures, indirect co-culture expressed significantly greater CK19 protein (p < 0.01). Thus, hUCMSCs may have the capability to differentiate into the epidermal lineage in vitro, which may be accomplished through this indirect co-culture model.
Keywords:Human umbilical cord-derived mesenchymal stem cells  Differentiation  Epidermal-like cells  Microporous membrane  Indirect co-culture system
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号