首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of monovalent and divalent cations and of guanine nucleotides on binding of vasopressin to the rat mesenteric vasculature
Authors:R Larivière  E L Schiffrin
Abstract:The rat mesenteric vasculature contains high affinity binding sites specific for 3H]Arg8-vasopressin which mediate its vasoconstrictor action. We have investigated the in vitro effect of monovalent and divalent cations and guanine nucleotides on the interactions between 3H]Arg8-vasopressin and its receptor in this preparation. Binding was increased by divalent cations from fourfold in the presence of Mg2+ at 5 mM to ninefold in the presence of Mn2+ at 5 mM. The potency order of divalent cations to increase binding was Mn2+ greater than Co2+ greater than Ni2+ greater than Mg2+ greater than Ca2+ approximately equal to control without cations. Addition of Na2+ or other monovalent cations (K+, Li+, and NH4+) in the presence or absence of divalent cations reduced binding significantly. Analysis of saturation binding curves showed a single high affinity site. In the presence of 5 mM Mn2+, binding capacity (Bmax) increased to 139 +/- 23 fmol/mg protein. Receptor affinity was enhanced (KD decreased to 0.33 +/- 0.07 nM). In presence of 5 mM Mg2+ or 150 mM Na+, Bmax and affinity were reduced. The addition of 100 microM GTP or its nonhydrolyzable analogue, Gpp(NH)p, reduced receptor affinity in the presence of Mn2+ + Na+, Mg2+, and Mg2+ + Na+, but not in the presence of Mn2+ alone. Computer modeling of competition binding curves demonstrated that in contrast with saturation studies, the data were best explained by a two-site model with high affinity, low capacity sites and low affinity, high capacity sites. Mn2+ or Mn2+ + Na+ with or without guanine nucleotides resulted in a predominance of high affinity sites. GTP or Gpp(NH)p in the presence of Mg2+ or Mg2+ + Na+ induced a reduction of affinity of the high affinity binding sites and the number of these sites. In the presence of Mg2+ + Na+ and guanine nucleotides, high affinity sites were maximally decreased. An association kinetic study indicated that the association rate constant (K+1) was increased by divalent cations and reduced by guanine nucleotides, without change in the dissociation rate constant (K-1). The equilibrium dissociation constant (KD) calculated with these rate constants (K-1/K+1) was similar to that obtained in saturation experiments at steady state. Dissociation kinetics were biphasic, indicating the presence of two receptor states, one of high and one of low affinity, associated with a slow and a rapid dissociation rate. Cations and guanine nucleotides interact with one or more sites closely associated with vasopressin receptors, including possibly with a GTP-sensitive regulatory protein, to modulate receptor affinity for vasopressin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号