Freeze fracture evidence for lateral phase separations in the plasmalemma of chilling-injured avocado fruit |
| |
Authors: | K. A. Platt-Aloia W. W. Thomson |
| |
Affiliation: | (1) Department of Botany and Plant Sciences, University of California, 92521 Riverside, CA, USA |
| |
Abstract: | Summary Unripe avocado fruit (Persea americana Mill. cv Hass) were held at 6 °C either in air or in an atmosphere with 100 PPM ethylene and were assessed for chilling injury after one and two weeks. Injury did not occur in any fruit after one week. After two weeks, the fruit in air were still uninjured, but the fruit subjected to ethylene exhibited chilling injury. When the uninjured fruit (both air-treated for one and two weeks and ethylene-treated for one week) were allowed to warm to room temperature before freezing for freeze fracture electron microscopy, replicas revealed membranes with a randomly dispersed pattern of intramembranous particles (IMPs). However, when these uninjured fruit were frozen for freeze fracture without warming, particle-free domains were visible in the plasmalemma. The membranes of the ethylene-treated, chilling-injured (2 weeks) fruit, on the other hand, contained particle-depleted regions in the plasmalemma of fruit frozen not only from 6 °C but also in those allowed to warm to room temperature before freezing for freeze fracture. These particle depleted microdomains were not seen in fruit kept continuously at room temperature (20 °C), even in the presence of high levels of endogenous ethylene which is produced during normal ripening. We suggest these particle-depleted microdomains formed in the fruit frozen for freeze fracture from low temperatures and in the chilling-injured fruit to be due to lateral phase separations of the membrane components, possibly due to an increase in the viscosity of some membrane lipids, leading to the formation of microdomains of gel phase lipid in the plane of the membrane. These phase separations appear to be initially reversible by raising the temperature, however, this reversibility is apparently lost after injury has occurred. With regard to the cause of chilling injury in avocados, we suggest that some secondary effect is involved due to the long term presence of gel phase lipids in the membrane. |
| |
Keywords: | Avocado Chilling injury Freeze-fracture Gel-phase lipid Membranes Phase separations |
本文献已被 SpringerLink 等数据库收录! |
|