首页 | 本学科首页   官方微博 | 高级检索  
   检索      


N-(2-hydroxypropyl)methacrylamide copolymers of a glutathione (GSH)-activated glyoxalase i inhibitor and DNA alkylating agent: synthesis, reaction kinetics with GSH, and in vitro antitumor activities
Authors:Zheng Zhe-Bin  Zhu Guozhang  Tak Heekyung  Joseph Erin  Eiseman Julie L  Creighton Donald J
Institution:Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland 21250, USA.
Abstract:The incorporation of anticancer prodrugs into polyacrylamide conjugates has been shown to improve tumor targeting via the so-called "enhanced permeability and retention" effect. This strategy has now been expanded to include two different classes of glutathione (GSH)-activated antitumor agents prepared by radical polymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with 2-methacryloyloxy-methyl-2-cyclohexenone (7) and/or with S-(N-4-chlorophenyl-N-hydroxycarbamoyl-thioethyl)methacrylamide (8), followed by treatment with 3-chloroperoxybenzoic acid, to give the HPMA copolymers of 7 and the 8-sulfoxide, respectively. In aqueous-buffered solution at pH 6.5, GSH reacts rapidly with poly-HPMA-8-sulfoxide (k approximately 2.3 mM(-1) min(-1)) to give S-(N-4-chlorophenyl-N-hydroxycarbamoyl)glutathione (1), a tight-binding transition state analogue inhibitor of the antitumor target enzyme glyoxalase I (K(i) = 46 nM), or with poly-HPMA-7 (k approximately 0.02 mM(-1) min(-1)) to give the electrophilic antitumor agent 3-glutathio-2-methylenecyclohexenone (4). Indeed, B16 melanotic melanoma in culture is inhibited by poly-HPMA-8-sulfoxide and by poly-HPMA-7 with IC(50) values of 168 +/- 8 and 284 +/- 5 microM, respectively. These values are significantly greater than those of the unpolymerized prodrugs suggesting that the cytotoxicity of the polymer prodrugs might be limited by slow cellular uptake via pinocytosis. This prodrug strategy should be applicable to a range of different GSH-based antitumor agents.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号