首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide
Authors:Cook Atlanta G  Johnson Louise N  McDonnell James M
Institution:Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, UK.
Abstract:Phosphorylase kinase (PhK) is a large hexadecameric enzyme consisting of four copies of four subunits: (alphabetagammadelta)4. An intrinsic calmodulin (CaM, the delta subunit) binds directly to the gamma protein kinase chain. The interaction site of CaM on gamma has been localized to a C-terminal extension of the kinase domain. Two 25-mer peptides derived from this region, PhK5 and PhK13, were identified previously as potential CaM-binding sites. Complex formation between Ca2+/CaM with these two peptides was characterized using analytical gel filtration and NMR methods. NMR chemical shift perturbation studies showed that while PhK5 forms a robust complex with Ca2+/CaM, no interactions with PhK13 were observed. 15N relaxation characteristics of Ca2+/CaM and Ca2+/CaM/PhK5 complexes were compared with the experimentally determined structures of several Ca2+/CaM/peptide complexes. Good fits were observed between Ca2+/CaM/PhK5 and three structures: Ca2+/CaM complexes with peptides from endothelial nitric oxide synthase, with smooth muscle myosin light chain kinase and CaM kinase I. We conclude that the PhK5 site is likely to have a direct role in Ca2+-regulated control of PhK activity through the formation of a classical 'compact' CaM complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号