首页 | 本学科首页   官方微博 | 高级检索  
     


Arctic Actinomycetes as Potential Inhibitors of Vibrio cholerae Biofilm
Authors:Nimmy?Augustine,Wilson?Peter A,Savita?Kerkar,Sabu?Thomas  author-information"  >  author-information__contact u-icon-before"  >  mailto:sabu@rgcb.res.in"   title="  sabu@rgcb.res.in"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Cholera and Environmental Microbiology Lab, Department of Molecular Microbiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India;(2) Department of Biotechnology, Goa University, Taleigao Plateau, 403 206, Goa, India;
Abstract:The aim of this study was to identify novel biofilm inhibitors from actinomycetes isolated from the Arctic against Vibrio cholerae, the causative agent of cholera. The biofilm inhibitory activity of actinomycetes was assessed using biofilm assay and was confirmed using air–liquid interphase coverslip assay. The potential isolates were identified using 16S rRNA gene sequencing. Of all, three isolates showed significant biofilm inhibition against V. cholerae. The results showed that 20% of the actinomycetes culture supernatant could inhibit up to 80% of the biofilm formation. When different extracted fractions were assessed, significant biofilm inhibition activity was only seen in the diethyl ether fraction of A745. At 200 μg ml−1 of diethyl ether fraction, 60% inhibition of V. cholerae biofilm was observed. The two potential isolates were found to be Streptomyces sp. and one isolate belonged to Nocardiopsis sp. This is the first report showing a Streptomyces sp. and Nocardiopsis sp. isolated from the Arctic having a biofilm inhibitory activity against V. cholerae. The spread of drug resistant V. cholerae strains is a major clinical problem and the ineffectiveness in antibiotic treatment necessitates finding new modes of prevention and containment of the disease, cholera. The formation of biofilms during the proliferation of V. cholerae is linked to its pathogenesis. Hence, the bioactive compound from the culture supernatant of the isolates identified in this study may be a promising source for the development of a potential quorum sensing inhibitors against V. cholerae.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号