首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Estimation of the microcirculation state in cerebrovascular disorders using laser doppler flowmetry data and hemorheological parameters
Authors:I A Tikhomirova  S G Mikhailova  S V Lychenko  A O Oslyakova
Institution:1.Ushinskii State Pedagogical University,Yaroslavl,Russia;2.Ministry of Health and Social Development,Yaroslavl State Medical Academy,Yaroslavl,Russia
Abstract:The microcirculation state was assessed in the group of patients with ischemic stroke (n = 30) and the control group of healthy individuals (n = 27) using laser Doppler flowmetry and the wavelet analysis of the amplitude-frequency range of microvascular blood flow oscillations combined with absorption spectroscopy. The hemorheological parameters (blood and plasma viscosity, the degree of red blood cell aggregability and deformability) were assessed in both groups, as were their correlations with the microcirculation parameters. Decreased tissue perfusion (by 25%) and specific oxygen consumption (by 21%) were revealed in a cerebrovascular accident. Changes in the tone-forming regulatory mechanisms of microcirculation of vasodilating nature (decreased microvascular tone, activation of the secretory function of endothelium) may be regarded as a compensatory reaction aimed at maintaining the blood supply of organs and tissues in stroke. The blood viscosity increase in patients due to the plasma viscosity increase and increased red blood cell aggregability and their decreased deformability cause the blood flow to slow down and the wall shear stress to increase, which activates the endothelial secretory function and vasodilation of microvessels. Correlation between the rheological parameters and the passive (respiratory and cardiac) rhythm amplitudes was observed in the control group. In patients, the hemorheological parameters were correlated with the characteristics of the active factors of microvascular blood flow modulation (endothelial, neurogenic, and myogenic), which confirms the role of changed blood properties and regulatory tone-forming mechanisms in the maintenance of tissue perfusion in cerbrovascular accidents.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号