首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Continuous flow magnetic cell fractionation based on antigen expression level
Authors:Schneider Thomas  Moore Lee R  Jing Ying  Haam Seungjoo  Williams P Stephen  Fleischman Aaron J  Roy Shuvo  Chalmers Jeffrey J  Zborowski Maciej
Institution:Department of Biomedical Engineering, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
Abstract:Cell separation is important in medical and biological research and plays an increasingly important role in clinical therapy and diagnostics, such as rare cancer cell detection in blood. The immunomagnetic labeling of cells with antibodies conjugated to magnetic nanospheres gives rise to a proportional relationship between the number of magnetic nanospheres attached to the cell and the cell surface marker number. This enables the potential fractionation of cell populations by magnetophoretic mobility (MM). We exploit this feature with our apparatus, the Dipole Magnet Flow Fractionator (DMFF), which consists of an isodynamic magnetic field, an orthogonally-oriented thin ribbon of cell suspension in continuous sheath flow, and ten outlet flows. From a sample containing a 1:1 mixture of immunomagnetically labeled (label+) and unlabeled (label-) cells, we achieved an increase in enrichment of the label+ cell fraction with increasing outlet numbers in the direction of the magnetic field gradient (up to 10-fold). The total recovery of the ten outlet fractions was 90.0+/-7.7%. The mean MM of label+ cells increased with increasing outlet number by up to a factor of 2.3. The postulated proportionality between the number of attached magnetic beads and the number of cell surface markers was validated by comparison of MM measured by cell tracking velocimetry (CTV) with cell florescence intensity measured by flow cytometry.
Keywords:Biomagnetic separation  Antibody binding  Magnetophoresis  CD45  Immunomagnetic cell separation  Cell sorting
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号