首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Muscle mitochondrial energetics predicts mobility decline in well‐functioning older adults: The baltimore longitudinal study of aging
Authors:Qu Tian  Brendan A Mitchell  Marta Zampino  Kenneth W Fishbein  Richard G Spencer  Luigi Ferrucci
Institution:1. Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore Maryland, USA ; 2. Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore Maryland, USA
Abstract:BackgroundMuscle mitochondrial dysfunction is associated with poor mobility in aging. Whether mitochondrial dysfunction predicts subsequent mobility decline is unknown.MethodsWe examined 380 cognitively normal participants aged 60 and older (53%women, 22%Black) who were well‐functioning (gait speed ≥ 1.0 m/s) and free of Parkinson''s disease and stroke at baseline and had data on baseline skeletal muscle oxidative capacity and one or more mobility assessments during an average 2.5 years. Muscle oxidative capacity was measured by phosphorus magnetic resonance spectroscopy as the post‐exercise recovery rate of phosphocreatine (kPCr). Mobility was measured by four walking tests. Associations of baseline kPCr with mobility changes were examined using linear mixed‐effects models, adjusted for covariates. In a subset, we examined whether changes in muscle strength and mass affected these associations by adjusting for longitudinal muscle strength, lean mass, and fat mass.ResultsLower baseline kPCr was associated with greater decline in all four mobility measures (β, p‐value: (0.036, 0.020) 6‐m usual gait speed; (0.029, 0.038) 2.5‐min usual gait speed; (0.034, 0.011) 6‐m rapid gait speed; (−0.042, <0.001) 400‐m time). In the subset, further adjustment for longitudinal muscle strength, lean mass, and fat mass attenuated longitudinal associations with changes in mobility (Δβ reduced 26–63%).ConclusionAmong initially well‐functioning older adults, worse muscle mitochondrial function predicts mobility decline, and part of this longitudinal association is explained by decline in muscle strength and mass. Our findings suggest that worse mitochondrial function contributes to mobility decline with aging. These findings need to be verified in studies correlating longitudinal changes in mitochondrial function, muscle, and mobility performance.
Keywords:magnetic resonance spectroscopy  mitochondrial energetics  mobility decline  skeletal muscle  walking speed
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号