首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complex variation in habitat selection strategies among individuals driven by extrinsic factors
Authors:Edward J Raynor  Hawthorne L Beyer  John M Briggs  Anthony Joern
Institution:1. Division of Biology, Kansas State University, Manhattan, KS, USA;2. ARC Centre of Excellence for Environmental Decisions, The University of Queensland, Brisbane, Qld, Australia
Abstract:Understanding behavioral strategies employed by animals to maximize fitness in the face of environmental heterogeneity, variability, and uncertainty is a central aim of animal ecology. Flexibility in behavior may be key to how animals respond to climate and environmental change. Using a mechanistic modeling framework for simultaneously quantifying the effects of habitat preference and intrinsic movement on space use at the landscape scale, we investigate how movement and habitat selection vary among individuals and years in response to forage quality–quantity tradeoffs, environmental conditions, and variable annual climate. We evaluated the association of dynamic, biotic forage resources and static, abiotic landscape features with large grazer movement decisions in an experimental landscape, where forage resources vary in response to prescribed burning, grazing by a native herbivore, the plains bison (Bison bison bison), and a continental climate. Our goal was to determine how biotic and abiotic factors mediate bison movement decisions in a nutritionally heterogeneous grassland. We integrated spatially explicit relocations of GPS‐collared bison and extensive vegetation surveys to relate movement paths to grassland attributes over a time period spanning a regionwide drought and average weather conditions. Movement decisions were affected by foliar crude content and low stature forage biomass across years with substantial interannual variation in the magnitude of selection for forage quality and quantity. These differences were associated with interannual differences in climate and growing conditions from the previous year. Our results provide experimental evidence for understanding how the forage quality–quantity tradeoff and fine‐scale topography drives fine‐scale movement decisions under varying environmental conditions.
Keywords:   Bison bison     climatic variability  forage maturation hypothesis  forage quality–  quantity tradeoffs  Konza Prairie  resource selection plasticity  step selection  weather‐induced resource variation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号