首页 | 本学科首页   官方微博 | 高级检索  
     


Measurement of net ecosystem production and ecosystem respiration in a Zoysia japonica grassland,central Japan,by the chamber method
Authors:Dhital  Deepa  Muraoka  Hiroyuki  Yashiro  Yuichiro  Shizu  Yoko  Koizumi  Hiroshi
Affiliation:(1) River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;(2) Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku 162-8480, Japan
Abstract:Measuring light, temperature, soil moisture, and growth provides a better understanding of net ecosystem production (NEP), ecosystem respiration (R eco), and their response functions. Here, we studied the variations in NEP and R eco in a grassland dominated by a perennial warm-season C4 grass, Zoysia japonica. We used the chamber method to measure NEP and R eco from August to September 2007. Biomass and leaf area index (LAI) were also measured to observe their effects on NEP and R eco. Diurnal variations in NEP and R eco were predicted well by light intensity (PPFD) and by soil temperature, respectively. Maximum NEP (NEPmax) values on days of year 221, 233, 247, and 262, were 2.44, 2.55, 3.90, and 4.17 μmol m−2 s−1, respectively. Throughout the growing period, the apparent quantum yield (α) increased with increasing NEPmax that ranged from 0.0154 to 0.0515, and NEP responded to the soil temperature changes by 44% and R eco changes by 48%, and R eco responded from 88 to 94% with the soil temperature diurnally. NEP’s light response and R eco’s temperature response were affected by soil water content; more than 27% of the variation in NEP and 67% of the variation in R eco could be explained by this parameter. NEP was strongly correlated with biomass and LAI, but R eco was not, because environmental variables affected R eco more strongly than growth parameters. Using the light response of NEP, the temperature response of R eco, and meteorological data, daily NEP and R eco were estimated at 0.67, 0.81, 1.17, and 1.56 g C m−2, and at 2.88, 2.50, 3.51, and 3.04 g C m−2, respectively, on days of year 221, 233, 247, and 262. The corresponding daily gross primary production (NEP + R eco) was 3.5, 3.3, 4.6, and 4.6 g C m−2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号