首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic diversity and reproductive mode in two non-native hydromedusae, Maeotias marginata and Moerisia sp., in the upper San Francisco Estuary, California
Authors:Mariah H Meek  Alpa P Wintzer  Nicole Shepherd  Bernie May
Institution:1. Department of Animal Science, University of California, One Shields Ave, Davis, CA, 95616, USA
2. Center for Watershed Sciences, University of California, One Shields Ave, Davis, CA, 95616, USA
Abstract:Reproductive strategy can play a significant role in invasion success and spread. Asexual and sexual reproduction may confer different advantages and disadvantages to a founding population, resulting in varying impacts on genetic diversity and the ability to invade. We investigate the role of reproductive mode in two species of non-native hydromedusae (Maeotias marginata and Moerisia sp.) in the San Francisco Estuary (SFE). Both species can reproduce asexually and sexually. We employed 7?C8 microsatellite markers to determine overall genetic diversity and to investigate contributions of asexual and sexual reproduction to the populations. We found both species had high levels of genetic diversity (Average HE?=?0.63 and 0.58, Number individuals sampled?=?111 and 277, for M. marginata and Moerisia sp. respectively) but also detected multiple individuals in clonal lineages. We identified the same clones across sampling locations and time, and the index of asexual reproduction (R) was 0.89 for M. marginata and 0.91 for Moerisia sp. Our results suggest both species maintain high population genetic diversity through sexual reproduction, in combination with asexual reproduction, which allows rapid propagation. In addition, we conducted genetic sequence analyses at the ribosomal ITS1 marker, using samples of Moerisia sp. from the SFE and M. lyonsi from Chesapeake Bay. We found 100?% sequence similarity showing that Moerisia sp. in the SFE and Chesapeake Bay are the same species. The two hydromedusae studied here possess the means to propagate rapidly and have high genetic diversity, both of which may allow them to successfully adapt to changing environments and expand their invasions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号