首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium
Authors:Ana Kitanovic,Thomas Walther,Marie Odile Loret,Jinda Holzwarth,Igor Kitanovic,Felix Bonowski,Ngoc Van Bui,Jean Marie Francois,&   Stefan Wö  lfl
Affiliation:Institute for Pharmacy and Molecular Biotechnology, Ruperto-Carola University of Heidelberg, Heidelberg, Germany;and;Universitéde Toulouse, INSA-UPS-INP, LISBP, Toulouse, France
Abstract:Maintenance and adaptation of energy metabolism could play an important role in the cellular ability to respond to DNA damage. A large number of studies suggest that the sensitivity of cells to oxidants and oxidative stress depends on the activity of cellular metabolism and is dependent on the glucose concentration. In fact, yeast cells that utilize fermentative carbon sources and hence rely mainly on glycolysis for energy appear to be more sensitive to oxidative stress. Here we show that treatment of the yeast Saccharomyces cerevisiae growing on a glucose-rich medium with the DNA alkylating agent methyl methanesulphonate (MMS) triggers a rapid inhibition of respiration and enhances reactive oxygen species (ROS) production, which is accompanied by a strong suppression of glycolysis. Further, diminished activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase upon MMS treatment leads to a diversion of glucose carbon to glycerol, trehalose and glycogen accumulation and an increased flux through the pentose-phosphate pathway. Such conditions finally result in a significant decline in the ATP level and energy charge. These effects are dependent on the glucose concentration in the medium. Our results clearly demonstrate that calorie restriction reduces MMS toxicity through increased respiration and reduced ROS accumulation, enhancing the survival and recovery of cells.
Keywords:DNA damage    energy charge    GAPDH    PYK    ROS    respiration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号