The mechano-gated K2P channel TREK-1 |
| |
Authors: | Alexandra Dedman Reza Sharif-Naeini Joost H. A. Folgering Fabrice Duprat Amanda Patel Eric Honoré |
| |
Affiliation: | (1) Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France |
| |
Abstract: | The versatility of neuronal electrical activity is largely conditioned by the expression of different structural and functional classes of K+ channels. More than 80 genes encoding the main K+ channel alpha subunits have been identified in the human genome. Alternative splicing, heteromultimeric assembly, post-translational modification and interaction with auxiliary regulatory subunits further increase the molecular and functional diversity of K+ channels. Mammalian two-pore domain K+ channels (K2P) make up one class of K+ channels along with the inward rectifiers and the voltage- and/or calcium-dependent K+ channels. Each K2P channel subunit is made up of four transmembrane segments and two pore-forming (P) domains, which are arranged in tandem and function as either homo- or heterodimeric channels. This novel structural arrangement is associated with unusual gating properties including “background” or “leak” K+ channel activity, in which the channels show constitutive activity at rest. In this review article, we will focus on the lipid-sensitive mechano-gated K2P channel TREK-1 and will emphasize on the polymodal function of this “unconventional” K+ channel. EBSA Satellite meeting: Ion channels, Leeds, July 2007. |
| |
Keywords: | Ion channels Stretch Mechanotransduction Potassium Pharmacology Physiology |
本文献已被 PubMed SpringerLink 等数据库收录! |
|