首页 | 本学科首页   官方微博 | 高级检索  
     


Untangling ligand induced activation and desensitization of G-protein-coupled receptors
Authors:Woolf Peter J  Linderman Jennifer J
Affiliation:Department of Chemical Engineering, University of Michigan, Ann Arbor 48109, USA.
Abstract:Long-term treatment with a drug to a G-protein-coupled receptor (GPCR) often leads to receptor-mediated desensitization, limiting the therapeutic lifetime of the drug. To better understand how this therapeutic window might be controlled, we created a mechanistic Monte Carlo model of the early steps in GPCR signaling and desensitization. Using this model we found that the rates of G-protein activation and receptor phosphorylation can be partially decoupled by varying the drug-receptor dissociation rate constant, k(off), and the drug's efficacy, alpha. The maximum ratio of G-protein activation to receptor phosphorylation (GARP) was found for drugs with an intermediate k(off) value and small alpha-value. Changes to the cellular environment, such as changes in the diffusivity of membrane molecules and the G-protein inactivation rate constant, affected the GARP value of a drug but did not change the characteristic shape of the GARP curve. These model results are examined in light of experimental data for a number of GPCRs and are found to be in good agreement, lending support to the idea that the desensitization properties of a drug might be tailored to suit a specific application.
Keywords:GPCR, G-protein-coupled receptor   GARP, G-proteins activated per receptor phosphorylated   MC, Monte Carlo   RGS, regulators of G-protein signaling   RK, receptor kinase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号