首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The H+-translocating ATP synthase in Halobacterium halobium differs from F0F1-ATPase/synthase
Authors:Y Mukohata  M Yoshida
Institution:Department of Biology, Faculty of Science, Osaka University.
Abstract:Cell envelope vesicles of Halobacterium halobium synthesize ATP by utilizing base-acid transition (an outside acidic pH jump) under optimal conditions (1 M NaCl, 80 mM MgCl2, pH 6.8) even in the presence of azide (a specific inhibitor of F0F1-ATPase) (Mukohata & Yoshida (1987) J. Biochem. 101, 311-318). An azide-insensitive ATPase was isolated from the inner face of the vesicle membrane, and shown to hydrolyze ATP under very specific conditions (1.5 M Na2SO4, 10 mM MnCl2, pH 5.8) (Nanba & Mukohata (1987) J. Biochem. 102, 591-598). This ATPase activity could also be detected when the vesicle components were solubilized by detergent. The relationship between ATP synthesis and the membrane-bound ATPase was investigated by modification of the vesicles with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) or N-ethylmaleimide (NEM). The inhibition pattern of ATP synthesis in the modified vesicles and that of ATP hydrolysis of the solubilized modified vesicles were compared under the individual optimum conditions. The inhibition patterns were almost identical, suggesting that the ATP synthesis and hydrolysis are catalyzed by a single enzyme complex. The ATP synthase includes the above ATPase (300-320 kDa), which is composed of two pairs of 86 and 64 kDa subunits. This is a novel H+-translocating ATP synthase functioning in the extremely halophilic archaebacterium. This "archae-ATP-synthase" differs from F0F1-ATPase/synthase, which had been thought to be ubiquitous among all respiring organisms on our biosphere.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号