首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Site mutations disrupt inter-helical H-bonds (α14W–α67T and β15W–β72S) involved in kinetic steps in the hemoglobin R→T transition without altering the free energies of oxygenation
Authors:Ching-Hsuan Tsai  Virgil Simplaceanu  Nancy T Ho  Tong-Jian Shen  Daojing Wang  Thomas G Spiro  Chien Ho  
Institution:a Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA;b Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
Abstract:Three recombinant mutant hemoglobins (rHbs) of human normal adult hemoglobin (Hb A), rHb (αT67V), rHb (βS72A), and rHb (αT67V, βS72A), have been constructed to test the role of the tertiary intra-subunit H-bonds between α67T and α14W and between β72S and β15W in the cooperative oxygenation of Hb A. Oxygen-binding studies in 0.1 M sodium phosphate buffer at 29 °C show that rHb (αT67V), rHb (βS72A), and rHb (αT67V, βS72A) exhibit oxygen-binding properties similar to those of Hb A. The binding of oxygen to these rHbs is highly cooperative, with a Hill coefficient of approximately 2.8, compared to approximately 3.1 for Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (αT67V), rHb (βS72A), rHb (αT67V, βS72A), and Hb A have similar quaternary structures in the α1β2 subunit interfaces. In particular, the inter-subunit H-bonds between α42Tyr and β99Asp and between β37Trp and α94Asp are maintained in the mutants in the deoxy form. There are slight perturbations in the distal heme pocket region of the α- and β-chains in the mutants. A comparison of the exchangeable 1H resonances of Hb A with those of these three rHbs suggests that α67T and β72S are H-bonded to α14W and β15W, respectively, in the CO and deoxy forms of Hb A. The absence of significant free energy changes for the oxygenation process of these three rHbs compared to those of Hb A, even though the inter-helical H-bonds are abolished, indicates that these two sets of H-bonds are of comparable strength in the ligated and unligated forms of Hb A. Thus, the mutations at αT67V and βS72A do not affect the overall energetics of the oxygenation process. The preserved cooperativity in the binding of oxygen to these three mutants also implies that there are multiple interactions involved in the oxygenation process of Hb A.
Keywords:Site mutations  Inter-helical H-bonds  Hemoglobin
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号