首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of DNA-dependent protein kinase by single-stranded DNA ends
Authors:Hammarsten O  DeFazio L G  Chu G
Institution:Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5115, USA.
Abstract:DNA-dependent protein kinase (DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination. The kinase is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PK(CS). To define the DNA structure required for kinase activation, we synthesized a series of DNA molecules and tested their interactions with purified DNA-PK(CS). The addition of unpaired single strands to blunt DNA ends increased binding and activation of the kinase. When single-stranded loops were added to the DNA ends, binding was preserved, but kinase activation was severely reduced. Obstruction of DNA ends by streptavidin reduced both binding and activation of the kinase. Significantly, short single-stranded oligonucleotides of 3-10 bases were capable of activating DNA-PK(CS). Taken together, these data indicate that kinase activation involves a specific interaction with free single-stranded DNA ends. The structure of DNA-PK(CS) contains an open channel large enough for double-stranded DNA and an adjacent enclosed cavity with the dimensions of single-stranded DNA. The data presented here support a model in which duplex DNA binds to the open channel, and a single-stranded DNA end is inserted into the enclosed cavity to activate the kinase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号