首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ozone inactivation of Cryptosporidium parvum in demand-free phosphate buffer determined by in vitro excystation and animal infectivity.
Authors:G R Finch  E K Black  L Gyürk  and M Belosevic
Institution:G R Finch, E K Black, L Gyürék, and M Belosevic
Abstract:Inactivation of Cryptosporidium parvum oocysts by ozone was performed in ozone demand-free 0.05 M phosphate buffer (pH 6.9) in bench-scale batch reactors at 7 and 22 degrees C. Ozone was added to each trial from a concentrated stock solution for contact times ranging from 5 to 15 min. The viability of the control and treated oocysts was determined by using in vitro excystation and infection in neonatal CD-1 mice. It was found that excystation consistently underestimated inactivation when compared with animal infectivity (P < or = 0.05). As inactivations increased, the difference between excystation and infectivity also increased. The inactivation kinetics of C. parvum by ozone deviated from the simple first-order Chick-Watson model and was better described by a nonlinear Hom model. The use of the Hom model for predicting inactivation resulted in a family of unique concentration and time values for each inactivation level rather than the simple CT product of the Chick-Watson model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号