首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bimolecular exon ligation by the human spliceosome bypasses early 3' splice site AG recognition and requires NTP hydrolysis
Authors:Anderson K  Moore M J
Institution:Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
Abstract:Here we report further characterization of an in vitro assay system for exon ligation by the human spliceosome in which the 3' splice site AG is supplied by a different RNA molecule than that containing the 5' splice and branch sites. By varying the time during splicing reactions when the 3' splice site AG is made available to the splicing machinery, we show that AG recognition need not occur until after lariat formation. Thus an early AG recognition event required for spliceosome formation and lariat formation on some mammalian introns is not required for exon ligation. Depletion/add-back studies and cold competitor challenge experiments reveal that commitment of a 3' splice site AG to exon ligation requires NTP hydrolysis. Because it both physically and kinetically uncouples exon ligation from spliceosome assembly and lariat formation, the bimolecular system will be a valuable tool for further mechanistic analysis of the second step of splicing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号