首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Laser flash photolysis studies of the kinetics of reduction of ferredoxins and ferredoxin-NADP+ reductases from Anabaena PCC 7119 and spinach: electrostatic effects on intracomplex electron transfer
Authors:M C Walker  J J Pueyo  J A Navarro  C Gómez-Moreno  G Tollin
Institution:Department of Biochemistry, University of Arizona, Tucson 85721.
Abstract:The influence of electrostatic forces on the formation of, and electron transfer within, transient complexes between redox proteins was examined by comparing ionic strength effects on the kinetics of the electron transfer reaction between reduced ferredoxins (Fd) and oxidized ferredoxin-NADP+ reductases (FNR) from Anabaena and from spinach, using laser flash photolysis techniques. With the Anabaena proteins, direct reduction by laser-generated flavin semiquinone of the FNR component was inhibited by complex formation at low ionic strength, whereas Fd reduction was not. The opposite results were obtained with the spinach system. These observations clearly indicate structural differences between the cyanobacterial and higher plant complexes. For the complex formed by the Anabaena proteins, the results indicate that electrostatic forces are not a major contributor to complex stability. However, the rate constant for intracomplex electron transfer had a biphasic dependence on ionic strength, suggesting that structural rearrangements within the transient complex facilitate electron transfer. In contrast to the Anabaena complex, electrostatic forces are important for the stabilization of the spinach Fd:FNR complex, and changes in ionic strength had little effect on the limiting rate constant for intracomplex electron transfer. This suggests that in this case the geometry of the initial collisional complex is optimal for reaction. These results provide a clear illustration of the differing roles that electrostatic interactions may play in controlling electron transfer between two redox proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号