首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Genetically Modifying the Lactococcal Proteolytic System on Ripening and Flavor Development in Cheddar Cheese
Authors:A McGarry  J Law  A Coffey  C Daly  P F Fox  and G F Fitzgerald
Abstract:Three batches of six Cheddar cheeses were manufactured by using the following lactococcal strains: (i) UC317 as a control; (ii) JL3601, a proteinase-negative derivative of UC317 transformed with high-copy-number plasmid pCI3601 containing the cloned proteinase gene complex from UC317; (iii) AM312, a proteinase-negative derivative of UC317 transformed with plasmid pMG36enpr containing the neutral proteinase gene from Bacillus subtilis; (iv) AC322, JL3601 transformed with pMG36enpr; (v) AC311, UC317 transformed with plasmid pNZ1120, which contains the aminopeptidase N (pepN) gene from Lactococcus lactis subsp. lactis MG1363; and (vi) AC321, JL3601 transformed with pNZ1120. Organoleptic and chemical analyses indicated that (i) the control cheeses, which were made with UC317, were of the highest quality; (ii) cheeses made with strains harboring pCI3601 in addition to either pMG36enpr (AC322) or pNZ1120 (AC321) did not ripen in a significantly different manner than cheeses made with AM312 (containing only pMG36enpr) or AC311 (containing only pNZ1120), respectively; (iii) cheeses made with strains that overproduce pepN did not have improved body, texture, and flavor characteristics; and (iv) cheeses made with strains harboring the neutral proteinase from B. subtilis (AM312 and AC322) underwent greatly accelerated proteolysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号