首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation-based power calculations for large cohort studies
Authors:Brown Patrick  Jiang Hedy
Affiliation:McMaster University, Canada. patrick.brown@utoronto.ca
Abstract:A large number of factors can affect the statistical power and bias of analyses of data from large cohort studies, including misclassification, correlated data, follow-up time, prevalence of the risk factor of interest, and prevalence of the outcome. This paper presents a method for simulating cohorts where individual's risk is correlated within communities, recruitment is staggered over time, and outcomes are observed after different follow-up periods. Covariates and outcomes are misclassified, and Cox proportional hazards models are fit with a community-level frailty term. The effect on study power of varying effect sizes, prevalences, correlation, and misclassification are explored, as well as varying the proportion of controls in nested case-control studies.
Keywords:Correlated data  Large cohort studies  Nested case–control studies  Power calculations  Survival models
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号