首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway
Authors:Li Ching-Hao  Tzeng Su-Liang  Cheng Yu-Wen  Kang Jaw-Jou
Institution:Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
Abstract:Pretreatment of HepG2 and H1299 cells with chloramphenicol rendered the cells resistant to mitomycin-induced apoptosis. Both mitomycin-induced caspase 3 activity and PARP activation were also inhibited. The mitochondrial DNA-encoded Cox I protein, but not nuclear-encoded proteins, was down-regulated in chloramphenicol-treated cells. Cellular levels of the p21(waf1/cip1) protein and p21(waf1/cip1) mRNA were increased through a p53-independent pathway, possibly because of the stabilization of p21(waf1/cip1) mRNA in chloramphenicol-treated cells. The p21(waf1/cip1) was redistributed from the perinuclear region to the cytoplasm and co-localized with mitochondrial marker protein. Several morphological changes and activation of the senescence-associated biomarker, SA beta-galactosidase, were observed in these cells. Both p21(waf1/cip1) antisense and small interfering RNA could restore apoptotic-associated caspase 3 activity, PARP activation, and sensitivity to mitomycin-induced apoptosis. Similar effects were seen with other antibiotics that inhibit mitochondrial translation, including minocycline, doxycycline, and clindamycin. These findings suggested that mitochondrial stress causes resistance to apoptosis through a p21-dependent pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号